Fun with numbers

Breaking the NRIC check digit algorithm

Ngiam Shih Tung

December 22, 2003

12

Introduction

- The algorithm for computing the check digit for Singapore identity card numbers is unpublished
- Algorithm is partially described in various open sources
- Objective of this exercise is to elucidate the complete algorithm from internet resources and "virtual experimentation"

UIN/FIN structure

• The National Registration Identity Card (NRIC) number is the Unique Identification Number (UIN) or Foreigner Identification Number (FIN)

- Century prefix
 - S, T 19th and 20th letters of alphabet for UINs issued in 19xx and 20xx respectively
 - F, G Foreigners (not 7th and 8th century !)
- Check digit (official reference)
 - How do we calculate this ? Computed from first eight characters of UIN/FIN
 - Detects data entry errors

UIN/FIN algorithm

- Government will release UIN/FIN algorithm for computing check digit, BUT
 - "Application is open ONLY to Singapore-based organisations with the *legitimate* need for the UIN/FIN validation."
 - "Your application is subject to our final approval and our decision shall be final"
 - License agreement requires:
 - "The Licensee agrees to take all reasonable steps to protect the Licensed Material from **unauthorised** copying, adaptation or use."
 - License fee
 - Algorithm \$200
 - Sample code \$400

Source: ICA website (http://app.ica.gov.sg/related_links/uin_fin/unifin_faq.asp)

IP Analysis

Can the government really prohibit unauthorised use ?

- Copyright
 - Source code is subject to copyright
 - Algorithms are *not* subject to copyright
- Patent
 - Algorithms are patentable, but
 - Patent must be published
 - Prior art probably exists in this case
 - Patent, if any is long expired (> 20 yrs)
- Trade Secret
 - May be protectable under the license agreement
 - BUT, no secret if the information is already publicly available or obtained via a different route

Modulo 11 checksum

• Algorithm for S-series (old-style) NRIC numbers is well-known*

7-digit NRIC number Weights $d = [(d_1 d_2 d_3 d_4 d_5 d_6 d_7) \bullet (2 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2)] \mod 11$ $= (2d_1 + 7d_2 + 6d_3 + 5d_4 + 4d_5 + 3d_6 + 2d_7) \mod 11$

Lookup d:

d	10	9	8	7	6	5	4	3	2	1	0
Check digit	А	В	С	D	Ε	F	G	Η		Ζ	J

(1)

• Does this work for F, G, T-prefix UIN/FINs ?

* e.g. soc.culture.singapore newgroup postings (1995)

Reverse Engineering the FIN algorithm

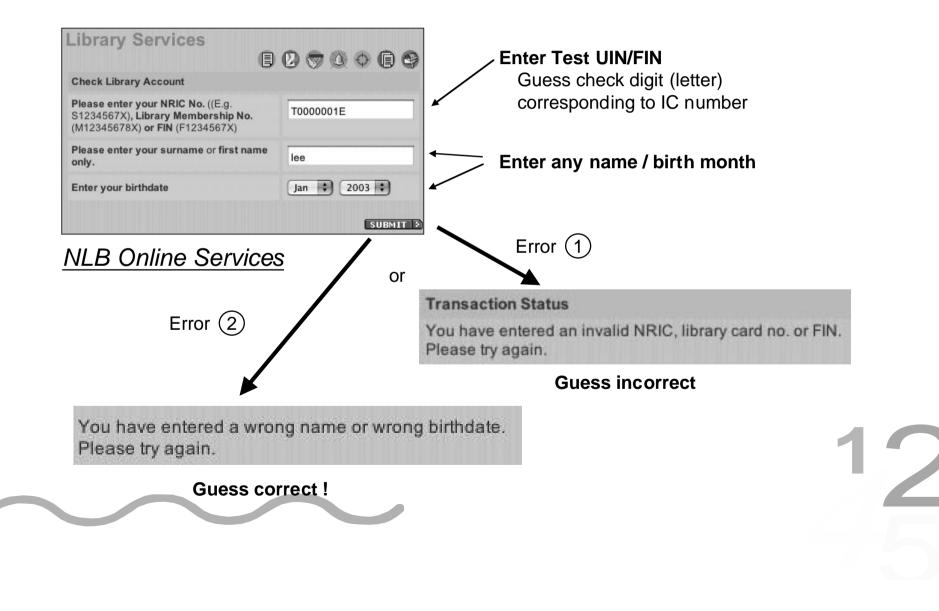
- Find a large set of FINs then reverse engineer the check digits to determine weights and mapping of checksum to letters
- MOM publishes a list of <u>Registered Safety Officers</u> on its <u>website</u>

ŀ	-	8	1	7	9	5	9	9	K	10
F	-	5	5	3	3	3	9	7	Κ	10
F	-	7	7	8	3	9	8	0	Κ	10
F	-	5	5	6	4	4	3	8	Κ	10
F	-	5	5	5	8	2	8	3	Κ	10
F	-	2	4	1	3	0	7	6	L	9
F	-	2	4	0	7	5	3	6	L	9
F	-	5	5	9	3	2	0	4	L	9
F	-	7	3	4	8	9	4	8	L	9
F	-	2	5	2	9	7	7	9	L	9
F	-	7	3	4	2	5	6	0	Μ	8
F	-	7	7	0	8	0	3	3	Μ	8
F	-	2	3	1	5	9	6	4	Μ	8
F	-	8	1	7	9	5	9	8	Μ	8
F	-	1	9	2	0	2	6	2	Μ	8
F	-	5	5	6	0	5	4	2	Ν	7
F	Ē	8	1	0	4	0.	4	9	N	7
F	:	gFl	Ns M		rac	-		m	Ν	7
F	:	1	M	QМ	₩e	ebsi	te	3	Ν	7
F		8	1	3	1	2	5	2	N	7
F	-	7	7	7	2	7	1	7	Р	6
E		0	8	2	3	1	6	0	Ρ	6

- 48 out of 1,287 Safety officers are foreigners with FINs
- By inspection, same algorithm and same weights are used but with different check letters:

d	10	9	8	7	6	5	4	3	2	1	0
Check digit	Κ	L	Μ	Ν	Ρ	Q	R	Τ	U	W	Χ

Checksums calculated using formula ①


21st century UINs - T & G prefix

- Difficult to obtain large list of T-and G-series UINs
 - Children born and foreigners registered during or after 2000
- Solution: Use a brute force approach and rely on the National Library web interface to check accuracy of guess

12

Virtual Experiment Verifying UIN/FIN check digits

21st century UIN/FIN check digit

- By exhaustive search, we conclude for T-prefix UINs
 - Same weighting factors and modulo 11 algorithm is used but
 - Mapping of check digits is shifted 4 places

d	10	9	8	7	6	5	4	3	2	1	0
S prefix	Α	В	С	D	Е	F	G	Н	Ι	Ζ	J
T prefix	Н	-	Ζ	J	А	В	С	D	Е	F	G
					►						
	S	hift 4	4 pla	ices							

• Similar shift is observed for G-prefix FINs

					5	-	3	l	•	0
K	L	Μ	Ν	Ρ	Q	R	Т	U	W	Х
Т	U	W	Х	Κ	L	Μ	Ν	Ρ	Q	R
-	K T	K L T U	K L M T U W	K L M N T U W X	K L M N P T U W X K	K L M N P Q T U W X K L	K L M N P Q R T U W X K L M	K L M N P Q R I T U W X K L M N	K L M N P Q R I U T U W X K L M N P	K L M N P Q R I U W T U W X K L M N P Q

Universal UIN/FIN Check Digit Algorithm

• For any UIN/FIN of format P $d_1d_2d_3d_4d_5d_6d_7$ C where $d_i = Number, i = 1..7$ C = Check Digit (letter) $d = \left\{ d_0 + \left[(d_1 d_2 d_3 d_4 d_5 d_6 d_7) \cdot (2765432) \right] \right\} \mod 11$ $d_0 = 0$ for P = S or F = 4 for P = T or G

Check digit is determined by prefix and value of d

d	10	9	8	7	6	5	4	3	2	1	0
UIN (S,T prefix)	A	В	С	D	E	F	G	Η		Ζ	J
FIN (F,G prefix)	K	L	Μ	Ν	Ρ	Q	R	Т	U	W	Х

References

- UIN algorithm described in chapter 3 of course notes for NUS Coding Theory course (<u>http://www.math.nus.edu.sg/~ma3218</u>)
 - S & T prefix algorithm confirmed
- No known public references to F, G-prefix FIN algorithm

Other checksum implementations

- Hong Kong Identity Card
 http://www.ghs.edu.hk/webtec/lindacws/CS/notes/theory/Data%20Control.pdf
 - HKID uses numerical check digit, e.g. B255241(3)
 - Check digit given by modulo 11 <u>checksum</u> with weights (8, 7, 6, 5, 4, 3, 2) where letter prefix is converted to number A=1, B=2, etc.
 - Use X if remainder is 10
- International Standard Book Number (ISBN)
 http://en.wikipedia.org/wiki/ISBN
 - ISBN is 9 digit number with check digit given by modulo 11 checksum
 - Weights (1, 2, 3, 4, 5, 6, 7, 8, 9)
 - Use X if remainder is 10

Points to Ponder

- Why modulo 11 ?
 - For numerical check digit, using modulo 11 allows checksum to be written as single digit (10 = X)
 - For alphabetic check digit, modulo 26 is more likely to detect errors
- Why weights (2, 7, 6, 5, 4, 3, 2)?
 - Is there an optimal weighting scheme (compare to HKID, ISBN weighting factors) ?
- Why ABCDEFGHIZJ for S-prefix UINs ?
- Will there be U-series UINs in 2200?

